Tag: Climate Action

The mysterious X factor behind a year of unbelievable heat

Predicting the future has always been a difficult, sometimes fruitless task, but scientists are surprisingly good at divining how hot the year ahead will be. For decades, their models have largely ended up matching global temperatures. Then 2023 came along.

At the beginning of the year, climate scientists at four organizations  — Berkeley Earth, NASA, the U.K. Met Office, and Carbon Brief — forecast that 2023 would be marginally hotter than the year before, with the consensus falling around 1.2 degrees Celsius of warming (2.2 degrees Fahrenheit) above preindustrial temperatures. But it blew past those projections to become the hottest year on record, reaching an estimated 1.5 C (2.7 F). “We were really far off, and we don’t know why,” said Zeke Hausfather, one of the scientists at Berkeley Earth who worked on the predictions.

The first sign that something was amiss came in March 2023, when the world’s oceans spiked to the hottest temperatures seen in modern history. Then the heat came for the land, too. It led to the hottest June ever recorded, followed by the hottest July, and the hottest every month since. On Wednesday, the European Union’s Copernicus Climate Change Service confirmed that last month was the hottest May in history, making for one year straight of record-shattering global temperatures, averaging 1.63 degrees C over preindustrial times. The report was released in tandem with World Meteorological Organization’s updated prediction that one of the next five years is likely to beat 2023 as the warmest year on record. 

The two reports came as a heat wave sizzled through the Western U.S., with 29 million Americans under heat alerts and warnings from Wednesday into the weekend. “If we choose to continue to add greenhouse gases to the atmosphere, then 2023/4 will soon look like a cool year,” said Samantha Burgess, director of the Copernicus Climate Change Service, in a statement.

Much of this warming over the past year is well within the range of what scientists have long predicted would be the result of burning fossil fuels with abandon. The heat dialed up even more when a recurring climate pattern known as El Niño took hold last summer. But scientists say these two factors alone can’t account for the surging temperatures the world has seen recently, particularly in the second half of 2023. Was that extra warming a blip they can brush off, explained away by natural variability or randomly coinciding events, or was it a sign that climate change has begun to veer off predictable tracks? 

A man cools off during a heat wave in Rio de Janeiro, Brazil, on November 18, 2023. Tercio Teixeira/AFP via Getty

“It’s not just some obscure quirk that nobody really cares about,” said Gavin Schmidt, the director of the NASA Goddard Institute for Space Studies in New York. “I mean, it really matters, and it has implications for the future, how this gets resolved.” Schmidt and other scientists are examining different theories that could explain the elevated temperatures, from a reduction in global aerosol pollution to underwater volcanic explosions. “Everything is on the table,” he said. 

Here’s what scientists know so far: Climate change has warmed the planet by 1.3 degrees C compared to preindustrial times. But the last 12 months have been about 1.6 degrees C hotter, according to the latest data. Some of that heat — around 0.1 or 0.2 degree C — can be attributed to El Niño warming up the Pacific Ocean. That still leaves as much as 0.2 C unexplained.

Scientists have a solid explanation for maybe 0.1 degree C of that extra heat: It could be a side effect of global efforts to reduce pollution. Starting in January 2020, the International Maritime Organization began enforcing a mandatory reduction of sulfur oxide emissions from shipping fuel. These airborne particles can be harmful to human lungs, contribute to acid rain, and inhibit plant growth. However, they also increase cloud cover and help reflect heat back into space. A paper published in Nature last week found that when some of these aerosol particles abruptly vanished, the Earth began to absorb more heat. 

The search is still on for other puzzle pieces. A 2022 volcanic eruption might have added warmth by sending a huge amount of heat-trapping water vapor into the atmosphere. Shifting weather patterns might have limited the Saharan sands that usually travels over the Atlantic Ocean, allowing more sunlight to heat ocean waters. An upswing in solar activity might have begun sooner than expected, trapping radiation within the atmosphere. Or, perhaps China has been cleaning up its air pollution faster than expected, and there are even less aerosols bouncing heat off the planet. 

More ominously, some scientists argue that the planet is more sensitive to climate change than previously thought. “The climate system is an angry beast, and we are poking it with sticks,” the geochemist Wallace Broecker, who died in 2019, often said. Daniel Swain, a climate scientist at the University of California, Los Angeles, thinks it might be time to update that metaphor. “We’re getting closer to the beast, and we’re aggravating it with ever greater frequency and magnitude,” he said. “So at some point, there may be surprises out there.”

According to Swain, solar activity and other suspects are unlikely explanations for the “wild card” that caused so much warming in 2023. He wonders whether it’s even possible to solve the puzzle. Schmidt, on the other hand, hopes scientists will have solved the X-factor by the end of this year.

Even as this year’s temperatures continue to shatter records, scientists have been less surprised than they were in 2023. The last several months of heat align more closely with what they expected from El Niño. And this summer, El Niño’s twin, a cooling pattern called La Niña, is expected to take over. If temperatures don’t fall as predicted two or three months from now, Hausfather said, “I think it’s an indication that you know something is happening that we don’t expect and don’t really have a good explanation for.”

This story was originally published by Grist with the headline The mysterious X factor behind a year of unbelievable heat on Jun 6, 2024.

Latest Eco-Friendly News

What’s behind the record outbreak of spongy moths in the eastern US?

Take a few steps into a leafy forest in New York’s Hudson Valley, close your eyes, and listen: That’s not the sound of rain, it’s millions of caterpillars chewing and pooping. 

On a clear spring day, the pitter-patter of spongy moth caterpillars eating their way through oak, maple, crab apple, basswood, and aspen trees can be heard over the sound of birds singing. Bits of green leaves litter the ground like confetti — evidence of the insatiable chewing taking place in the canopy above. Hundreds of caterpillars bob on long, wispy silk threads, waiting for a breeze to carry them to a new tree. 

The Northeast and Midwest are enduring what is, in some places, the worst outbreak of spongy moths on record. One of the factors driving the proliferation of very hungry caterpillars is climate change-spurred drought, which allows spongy moths to breed with abandon, producing up to a million caterpillars per acre. Trees are resilient, but this outbreak has been especially long and damaging. After two consecutive years of intensive spongy moth feeding, up to 80 percent of trees in a hardwood forest that has been defoliated, or stripped of its leaves, will die. The current spongy moth epidemic has lasted five years in some parts of the U.S. 

“When trees are defoliated like this right at this time of year, they are using reserves that are in the trunk and in the roots to put out a second flush of growth,” said Brian Eshenaur, a plant pathologist at Cornell University’s Integrated Pest Management Program. “If the tree has to do that two years in a row, it’s really tapping all the reserves it has.” 

The caterpillars aren’t the only forest pests benefiting from climate change. Many invasive species in the U.S. are expanding, generally thanks to milder winters brought on by warmer-than-average global temperatures. Insects like the hemlock woolly adelgid, the emerald ash borer, the Japanese beetle, and the spotted lanternfly are chewing their way through the country’s trees at record paces — leading to widespread tree mortality and stressed forests that are susceptible to drought and more disease. No one species is capable of taking down the nation’s forests, which collectively store some 60 billion metric tons of carbon, but the rising tide of invasive species is doing serious cumulative damage. 

Spongy moths have been in the United States since 1869, when a French artist and amateur entomologist named Etienne Leopold Trouvelot imported some from Europe and began raising them in netting in his backyard near Boston. Trouvelot was hoping to breed a silkworm suited to American climes that could be used for commercial textile production. Spongy moths, known as gypsy moths at the time, float from leaf to leaf and tree to tree on long, durable lines of silky thread. But the moths soon escaped from captivity, perhaps because a heavy storm tore through Trouvelot’s netting, and some of the bugs decamped to the Massachusetts woods. 

The sun shines against a blue sky as a man looks up at a tree that is barren of leaves at its tips.
A member of the Massachusetts state forest health program looks at trees defoliated by spongy moths.
Suzanne Kreiter / The Boston Globe via Getty Images

Two decades later, in the midst of the first spongy moth infestation on record, one resident of the town in which Trouvelot lived described a world carpeted with black, hairy caterpillars. “I do not exaggerate when I say that there was not a place on the outside of the house where you could put your hand without touching caterpillars,” the resident told the Boston Post in 1889. (The caterpillars don’t bite humans, but coming into contact with their spiky hairs causes some people to develop an itchy and painful rash.)

For more than a century after that initial outbreak, spongy moths spread at a rate of about 13 miles per year through New England, the Mid-Atlantic, the Midwest, and parts of the South, feasting on 300 species of leafy trees and shrubs and leaving entire stretches of forest bare in their wake. The moths defoliated 81 million acres cumulatively between 1970 and 2013. Because of the toll they take on trees, keeping spongy moth populations in check has become one of the U.S. Forest Service’s highest priorities. The economic cost of managing spongy moths has averaged $30 million per year for the past 20 years. 

And climate change is making things worse. Outbreaks typically occur every eight to 12 years, and each surge lasts one to three years. The current outbreak has lasted longer than usual, said Tom Coleman, a Forest Service entomologist who manages the agency’s Slow the Spread spongy moth program, in part because of drought in some of the areas that the moths inhabit. 

Drought affects the spread of a fungal pathogen called Entomophaga maimaiga that curbs spongy moth populations. The fungal pathogen, originally found in Japan, was introduced by researchers to the U.S. as a spongy moth control measure in the early 1900s. The pathogen can be incredibly effective at killing the moths in their caterpillar stage, but it needs a cool, wet spring in order to proliferate. Cyclical outbreaks of spongy moths often follow years that are drier than average, when the pathogen is not as prevalent in the environment. “Without that fungal pathogen keeping the populations in control, we get these large outbreaks,” Coleman said.

In the eastern portions of the country where spongy moth outbreaks occur, climate change is making weather patterns more erratic. Much of the eastern U.S. is projected to become wetter, on average, as the planet warms. But climate change also fuels pockets of drought in these regions during warm months. Drought in 2023 and the beginning of 2024 in northern Virginia, southern Pennsylvania, and parts of Wisconsin and Michigan helped fuel this year’s outbreak. Drought at the huge scale often seen in the American West isn’t a prerequisite for  spongy moth outbreaks in the east. “It doesn’t have to be a whole annual drought,” Coleman said. “It can just be a rather warmer, dry spring.” 

It’s unclear whether rising temperatures will cause spongy moths to emerge more frequently, but it is safe to assume that a warmer, drier environment will cause cyclical outbreaks to become more intense over time. Luckily, the Forest Service has had some luck deploying more than 100,000 pheromone-laced traps to catch the bugs as they try to push west. The agency has also treated 10 million acres of forest with a biological insecticide that kills the caterpillars, preventing the bugs from establishing in new places.

Still, experts worry about the multipronged threats America’s trees face from pests and climate change, and the intersection of those two dangers. “Not only can climate change affect insects, it can also make trees that are native to a certain area less suited,” Eshenaur said. “A lot of our trees in the Northeast can’t tolerate high temperatures and sustained drought. That can make them more susceptible to these new pests that are coming in.”

Correction: A photo caption in this story originally misidentified a different type of moth as a spongy moth.

This story was originally published by Grist with the headline What’s behind the record outbreak of spongy moths in the eastern US? on Jun 6, 2024.

Latest Eco-Friendly News

Nations need to do more to defend Indigenous rights, UN report says

Two months ago, Makanalani Gomes, a Native Hawaiian activist, spoke about the importance of youth self-determination at the largest global gathering of Indigenous peoples at the United Nations headquarters in New York City. After flying back to Hawaiʻi, she had one major takeaway from the event, known as the United Nations Permanent Forum on Indigenous Issues:

“The need for sovereignty for all Indigenous peoples is critical, is paramount, to us literally surviving,” said Gomes, reflecting on the forum Wednesday. 

Gomesʻ conclusion isn’t just her opinion. It’s a message that underpins a new report released this week by the United Nations summarizing the official recommendations from this year’s gathering. The Permanent Forum on Indigenous Issues is a United Nations advisory body dedicated to representing the perspectives of Indigenous peoples who otherwise would not have a voice in the U.N. General Assembly.

The final report is a a 30-page list that details a broad list of recommendations aimed at specific countries, international agencies, and U.N. member states. 

While this year’s forum wasn’t officially climate-focused, attendees spoke again and again about how climate disasters, environmental degradation, and other modern-day challenges are rooted in the exploitation of Native land and how the green energy transition compounds that exploitation. 

The final report urges U.N. agencies to do more to ensure carbon credit programs are effective and not harmful. Carbon credit programs are intended to decrease carbon emissions, but Indigenous advocates say they in practice divide and exploit Indigenous peoples. 

“The Forum urges the secretariats of the United Nations Framework Convention on Climate Change and the Convention on Biological Diversity, and the International Monetary Fund and the World Bank, to demand high-integrity projects that have clear accountability for carbon emissions and biodiversity as well as measured benefits for Indigenous Peoples,” the report said. 

All four United Nations bodies are invited to report on their work at next year’s Permanent Forum gathering in New York City, the report said. 

U.N. agencies should stop conflating Indigenous peoples with the more amorphous term “local communities,” which could dilute Indigenous rights, the report advised. 

The Permanent Forum also repeatedly called on the need for more climate funding for Indigenous peoples and the importance of involving Indigenous peoples in efforts to establish more protected areas. “Conservation efforts worldwide must recognize and respect the collective rights of Indigenous Peoples to their lands, territories and resources,” the report said. 

The final report also urges specific countries to respect Indigenous peoples. In particular, the Permanent Forum said it regretted the outcome of Australia’s failed referendum last year that would have given Indigenous people an official voice in government. 

Repeatedly, the reportʻs recommendations refer to the need to support Indigenous peoplesʻ right to self-determination.

“The Forum further recommends that States engage in processes focused on decolonization and reconciliation policies that facilitate the path of Indigenous Peoples to self-determination, with the full and effective participation of Indigenous Peoples,” the report said. 

That message is on Gomes’ mind this week as she participates in another major gathering of Indigenous peoples, this time a festival celebrating Indigenous Pacific peoples in Hawaiʻi. On Wednesday, canoes were officially welcomed to Hawaiʻi after sailing  thousands of miles across the Pacific without compasses, navigating through Indigenous knowledge of the stars and waves.

Gomes thought about how the crews had sailed from independent Pacific nations to the Hawaiian archipelago that is dominated by the American flag. 

“We are not free until we all are free,” she said. 

This story was originally published by Grist with the headline Nations need to do more to defend Indigenous rights, UN report says on Jun 6, 2024.

Latest Eco-Friendly News

World’s Oceans Face ‘Triple Threat’ of Oxygen Loss, Extreme Heat and Acidification, Study Finds

A new study has found that the planet’s oceans are experiencing a “triple threat” of oxygen loss, extreme heat and acidification.

The researchers discovered that, as global heating has worsened, increasing stress has been placed on marine species, with as much as 20 percent of the world’s oceans affected by these threats.

“The global ocean is becoming warmer, more acidic, and losing oxygen due to climate change. On top of this trend, sudden increases in temperature, or drops in pH or oxygen adversely affect marine organisms when they cannot quickly adapt to these extreme conditions,” the study said.

The first-of-its-kind study found that many vertical water column-compound extreme events occur in high latitudes and the tropics, last 10 to 30 days and reduce habitable space by as much as 75 percent.

Global heating, caused primarily by humans burning fossil fuels for energy, has led to compound events in the top 984 feet of the ocean being six times more intense and lasting three times longer than they did in the early 1960s, according to the study, as The Guardian reported.

“The impacts of this have already been seen and felt,” said lead author of the study Joel Wong, a researcher with ETH Zürich, as reported by The Guardian. “Intense extreme events like these are likely to happen again in the future and will disrupt marine ecosystems and fisheries around the world.”

The study, “Column-Compound Extremes in the Global Ocean,” was published in the journal AGU Advances.

As ocean temperatures rise, it not only affects marine life, but the intensity of tropical storms.

“The heat has been literally off the charts, it’s been astonishing to see. We can’t fully explain the temperatures we are seeing in the Atlantic, for example, which is part of the reason why hurricane season is such a concern this year,” said Andrea Dutton, a University of Wisconsin–Madison climate scientist and geologist who was not part of the study, as The Guardian reported. “It’s quite frightening.”

As the world’s oceans soak up excess carbon dioxide and heat from the burning of fossil fuels, the carbon leads to increased ocean acidity while depleting oxygen levels. This pushes fish and other species out of their normal habitats and dissolves the shells of marine organisms.

“This means that marine life is being squeezed out of places it is able to survive,” Dutton said, as reported by The Guardian. “People have to recognize that oceans have been buffering us from the amount of heat we have been feeling on land as humans, but that this hasn’t been without consequence.”

The post World’s Oceans Face ‘Triple Threat’ of Oxygen Loss, Extreme Heat and Acidification, Study Finds appeared first on EcoWatch.

Latest Eco-Friendly News

Caving on climate: Kathy Hochul axes congestion pricing in New York

At an economic summit in Ireland last month, New York Governor Kathy Hochul bragged about her state’s decades-long quest to implement so-called congestion pricing in New York City. Within mere months, the extensive toll system was poised to take effect, charging cars and trucks a once-per-day fee between $15 and $36 to enter lower Manhattan — a move that, in addition to the quality-of-life benefits touted by Hochul, promised to both drastically reduce carbon emissions in one of the country’s most congested regions and also provide badly needed funding for its most extensive mass transit system.

“It took a long time because people feared backlash from drivers set in their ways,” she said in her speech. “We must get over that.”

Ultimately, however, Hochul herself couldn’t seem to get over this fear. On Wednesday, the governor announced an “indefinite” halt to the soon-to-debut program. In doing so, she jeopardized not only a road-ready policy to improve quality of life in New York City but also the “nation-leading climate plan” that is one of the governor’s signature initiatives.

In reality, New York’s ambitious climate goals — cutting greenhouse gas emissions 40 percent by 2030 and 85 percent by 2050 — predate the current governor. The state passed its landmark climate law back in 2019, but ever since then its success has been far from certain. This is in large part because the effort depends on a lot of factors that are outside of the state government’s control: the completion of major wind farms in the waters off of Long Island, the building of an electricity transmission line to bring carbon-free hydropower into the state, and the retrofitting of thousands of old and inefficient buildings in New York City, among others.

One thing the government could control, however, was congestion pricing, a plan that had undergone years of consultation, modeling, and study that demonstrated with confidence that it would dramatically slash car traffic in New York City, easing gridlock and reducing air pollution from vehicle tailpipes. Modeled on successful programs in London and other European cities, the toll policy traveled a long road to approval since then-mayor Michael Bloomberg started to push for it in earnest around 2007. It was finally set to become a reality this month, following years of stringent environmental review and political squabbling. Then, on Wednesday, Hochul ordered the Metropolitan Transit Authority  to “indefinitely pause” the program, saying it would have placed an “undue strain” on drivers and added “another burden to middle class New Yorkers.” 

The abrupt decision, reportedly an attempt to court voters in contested congressional districts in suburbs outside the city, has all but doomed what had been a landmark climate policy more than a decade in the making. (The governor’s office did not immediately respond to Grist’s request for comment on Wednesday afternoon.) It has also left many transit and climate advocates rudderless, and clouded the state’s path to meeting its already tenuous climate goals. 

“We cannot take on climate change without addressing transportation,” said Sara Lind, the co-executive director of Open Plans, an urbanist advocacy group based in New York City. “Canceling it is a huge mistake in terms of our approach to climate change. We need our Democratic governor to be a leader on climate change, but she’s just caving.” 

Indeed, transportation is the largest source of greenhouse gas emissions in New York state and the second-largest emissions source in New York City, just behind the city’s buildings. It’s also the largest source of air pollution from harmful tailpipe chemicals like nitrogen oxide and carbon monoxide, which cause asthma and a bevy of other lung and heart diseases.

The MTA’s analysis of the program found that congestion pricing would reduce traffic into lower Manhattan by around 17 percent, cutting the city’s overall carbon emissions by around 1 percent as drivers opted to take public transportation instead of driving, burning less gasoline in the process. These effects would have been most significant in downtown Manhattan, where the policy would have reduced greenhouse gas pollution by more than 11 percent. 

The policy was also projected to promote a virtuous cycle in the city: The MTA estimated it would collect around $1 billion per year in tolls, and it planned to use that money to anchor a $15 billion bond issuance for capital work on New York’s aging but heavily-used public transit system. Upgrades and expansions in the subway and bus system would likely have incentivized more residents to take mass transit rather than driving.

Similar congestion pricing systems have achieved air quality benefits in places such as London, Singapore, and Stockholm, which saw carbon emissions decline by around 10 percent when it rolled out a tolling program. A recent analysis of 16 such systems found that they “provide local governments with a relatively cost-effective tool to implement consistent reductions in greenhouse gas emissions.”

Despite the data, the congestion pricing plan had many opponents, from New Jersey’s Democratic governor Phil Murphy to Republican state representatives on Long Island. Many of these opponents cast the $15-per-day congestion fee as a regressive tax on low-income drivers in the outer boroughs and suburbs. The MTA’s analysis found that these concerns were overblown. According to the agency, there are only 5,200 residents in New York City who commute to Manhattan by car and live more than a half-mile away from some form of public transit. The agency also promised to create a toll waiver for low-income drivers, though that category was estimated to include only 18,000 drivers in the entire New York metropolitan area, which is home to more than 20 million people.

The plan also drew criticism from some community advocates in outer boroughs such as the Bronx and Staten Island, who argued that discouraging traffic into Manhattan would increase pollution burdens in their neighborhoods. The MTA found that these increases would be minuscule, but it also pledged to mitigate them by taking steps like electrifying diesel trucks in pollution hotspots like the Bronx’s Hunts Point Food Market. 

But this year, as the policy inched closer to becoming a reality, most politicians and interest groups in New York came around to supporting it. Even the Real Estate Board of New York, or REBNY, a powerful lobby that has supported Hochul, expressed disappointment with her decision to scrap the toll program.

“Congestion pricing will provide environmental and transportation benefits that will make New York City more competitive on the national and international stage,” said REBNY president James Whelan in a statement. “Any delay in its implementation should be of a limited duration.”

In the pre-recorded video that announced her decision, Hochul said that “there never is only one path forward.” Indeed, says Lind, there are other measures that New York could take to reduce transportation emissions: The city could restrict freight traffic deliveries to certain periods of the day, as other cities such as Barcelona and Rome have done, or it could limit driving in residential neighborhoods. But the state’s best weapon to discourage driving is the MTA itself, and it’s hard to imagine the beleaguered agency upgrading its subway and bus systems without the billion-dollar boost that would have come from the congestion tolls.

This story was originally published by Grist with the headline Caving on climate: Kathy Hochul axes congestion pricing in New York on Jun 5, 2024.

Latest Eco-Friendly News

NOAA Designates 1,722-Square Mile National Marine Sanctuary in New York

The United States National Oceanic and Atmospheric Administration (NOAA) has announced the designation of the 1,722-square-mile Lake Ontario National Marine Sanctuary in eastern Lake Ontario, New York.

It is the country’s 16th national marine sanctuary and will celebrate the area’s Indigenous and maritime history while providing new opportunities for education, research, recreation and tourism related to maritime heritage in coastal communities, a press release from NOAA said.

“President Biden is leading the most ambitious conservation agenda in history through the America the Beautiful Initiative, and today’s marine sanctuary designation is another key milestone in that effort,” said Brenda Mallory, chair of the White House council on environmental quality, in the press release. “For generations to come, families will be able to learn about our nation’s maritime history and the rich cultural heritage of Lake Ontario.”

America the Beautiful has a goal of conserving, protecting or restoring a minimum of 30 percent of lands and waters in the U.S. by 2030. President Joe Biden has set aside more than 41 million acres for conservation.

“The designation of this sanctuary is a milestone for NOAA, New York and the nation. Establishing a national marine sanctuary in the cold fresh waters of eastern Lake Ontario opens the door to world-class research and education initiatives, and provides opportunities to support and enhance tourism and the local economy within one of the most historically significant regions in the Great Lakes,” said Rick Spinrad, NOAA administrator, in the press release.

The waters and coastline of Eastern Lake Ontario hold a diverse heritage and history, including trade routes and transportation, beginning with early Indigenous settlements.

The marine sanctuary features a collection of 41 found shipwrecks and a submerged aircraft that is one of the world’s best preserved.

Map of known and potential wreck locations (approximate) within Lake Ontario National Marine Sanctuary. NOAA

“The shipwrecks, such as St. Peter, a three-masted schooner that was loaded with coal when it was lost in a storm in 1898, embody more than two centuries of the nation’s maritime history,” the NOAA press release said.

Another three aircraft, 19 shipwrecks and other archaeological sites may still be located in the area, according to historical records, a press release from the National Marine Sanctuary Foundation said.

NOAA will further locate, monitor and research the discoveries, as well as other cultural resources of maritime history. NOAA will also partner with Indigenous governments and other local partners to promote education and outreach.

“From sacred places and cultural practices to lighthouses and historic shipwrecks, this region’s maritime cultural legacy provides meaning and a sense of place to countless generations,” said Nicole R. LeBoeuf, director of the National Ocean Service, in the NOAA press release. “NOAA looks forward to working with a wide range of partners to learn, share and celebrate the remarkable history of the eastern Lake Ontario region.”

Nomination for the sanctuary was made by a group of organizations that included the Onondaga Nation, museums, conservation, recreation, education and tourism groups, historical societies and local government units.

Portions of the homelands of the Cayuga, Seneca, Onondaga and Oneida Nations lie within the boundaries of the sanctuary.

“NOAA acknowledges and respects that eastern Lake Ontario is of cultural, spiritual and historical significance to the Nations of the Haudenosaunee Confederacy, who have been stewards of their homelands for thousands of years and continue to care for these lands and waters,” said John Armor, director of the Office of National Marine Sanctuaries, in the NOAA press release. “We are dedicated to building equitable partnerships with Indigenous Peoples in the stewardship of these waters.”

The sanctuary will be co-managed by New York State and NOAA. It is the third marine sanctuary in the Great Lakes and the first in New York.

“The designation of Lake Ontario National Marine Sanctuary ensures that this bustling, vibrant, and historic part of the state of New York will be recognized as one of the most iconic U.S. waters, alongside vast expanses of the Pacific, the vibrant deep of the Gulf of Mexico, the reefs of the Florida Keys,” said Joel Johnson, president and CEO of the National Marine Sanctuary Foundation, in a press release from the foundation. “This announcement creates new opportunities for education on American and Tribal history, outdoor recreation and exploration for New Yorkers and for all Americans.”

On September 6 at 11 a.m., there will be an event to celebrate the new sanctuary at William S. Cahill Pier in Oswego, New York. For more information, visit the sanctuary’s website.

The post NOAA Designates 1,722-Square Mile National Marine Sanctuary in New York appeared first on EcoWatch.

Latest Eco-Friendly News

Rate of Global Warming Reached a Record High in 2023, Scientists Say

Scientists have determined that the rate of global warming increased in 2023, the same year that the Northern Hemisphere experienced its hottest summer on record. The vast majority, 92%, of extreme heat in 2023 could be attributed to humans, scientists said.

A team of 57 scientists completed research on the high temperatures the world experienced in 2023 and used methods approved by the United Nations to investigate the warming, The Associated Press reported. They found that the world reached a warming rate of 0.26 degrees Celsius (0.47 degrees Fahrenheit) per decade in 2023, a record high rate. In 2022, the warming rate per decade had been 0.25 degrees Celsius (0.45 degrees Fahrenheit). They published their findings in the journal Earth System Science Data.

According to the study, the average greenhouse gas emissions per decade have been on a constant increase since the 1970s, especially because of an increase in carbon dioxide emissions from fossil fuels. There have also been increases in methane and nitrous oxide, the report noted.

However, the report authors wrote that while the rate of warming reached a record in 2023, it was still in line with the warming rates of the past few decades and met warming predictions established from a 2001 through 2020 time frame to 2021 through 2040.

“If you look at this world accelerating or going through a big tipping point, things aren’t doing that,” Piers Forster, lead author of the study and a professor of climate physics at Leeds University, told The Associated Press. “Things are increasing in temperature and getting worse in sort of exactly the way we predicted.”

The study found that the increase in global surface temperatures could be linked primarily to a wide range of human activities. While fossil fuel and industry were the primary factors, according to scientists, they also noted land use, contrails and other factors played a part in the increased warming rate.

The warming was also impacted by natural factors, including volcanic activity and the El Niño climate pattern that took place for much of 2023. Last year, the United Nations’ World Meteorological Organization (WMO) had warned that El Niño could push global temperatures past the 1.5 degree Celsius threshold outlined in the Paris Agreement. An international team of scientists have predicted that El Niño could contribute to global heating this year, too.

According to the new study, the average global temperature for 2023 reached 1.43 degrees Celsius over the pre-industrial average, and over the past decade, average warming is about 1.19 degrees Celsius above pre-industrial global temperatures.

With this, the scientists wrote that the 1.5 degree Celsius warming limit could be reached or exceeded within the next decade, but there is hope that emissions and the rate of warming could decline with societal changes.

“Acceleration if it were to happen would be even worse, like hitting a global tipping point, it would be probably the worst scenario,” Sonia Seneviratne, co-author of the study and the head of land-climate dynamics at ETH Zurich, told The Associated Press. “But what is happening is already extremely bad and it is having major impacts already now. We are in the middle of a crisis.”

The post Rate of Global Warming Reached a Record High in 2023, Scientists Say appeared first on EcoWatch.

Latest Eco-Friendly News

A different kind of youth activist: Meet the high schoolers who invented a microplastics solution

Illustration of beaker with an atom, gears, and a lightning bolt floating around it

The vision

“I think science is the perfect way to solve this issue. Because a lot of innovation and invention happens in science, and technology is always changing. And so I think, if I really wanted to make a big impact, this would be the way to go.”

High schooler and science fair winner Victoria Ou

The spotlight

Last month, around 2,000 high school students from all over the world traveled to Los Angeles for the annual Regeneron International Science and Engineering Fair, or ISEF. Reading the list of winning projects is … well, intimidating, even for a 30-year-old who technically has a degree in science. The top prize (of $75,000 — this is not the science fair from your high school gym) went to Grace Sun for her project “Novel Chemical Doping Strategy to Enhance N-Type Organic Electrochemical Transistors.” Another top award went to a project titled “Solving Second-Order Cone Programs in Matrix Multiplication Time.”

This year’s entrants included several climate-related projects as well: an AI approach to wildfire detection; a palm tree-inspired prototype for disaster-resilient building; a new energy-smart approach to optimizing indoor temperatures.

Youth climate activists get a lot of attention. We see them taking to the streets, demanding action, and holding policymakers accountable, and we believe their passion could change the world. But looking at these ISEF projects, it struck me that we often overlook this very different form of youth leadership.

These are not kids being pushed into crazy science projects by strict parents or overzealous teachers. They want to change the world, too — through research and innovation. And talking to them just confirms that.

“I want to help make sure that future generations can still have the same planet that we live on — that they don’t have to constantly worry about their health just because of what we have done in the past,” said Victoria Ou, another of this year’s top winners.

Victoria and Justin Huang, two 17-year-olds from The Woodlands College Park High School in Texas, designed a system that filters microplastic particles out of water using ultrasound waves. Their project received the Gordon E. Moore Award for Positive Outcomes for Future Generations, which comes with a scholarship prize of $50,000.

Two smiling teenagers hold up their hands with medals around their necks, standing in front of a curtain with ISEF written on it

Victoria and Justin pose with their award at ISEF. Society for Science / Lisa Fryklund

They’ve competed in science fairs before, starting in middle school. Justin notes that it’s a part of the culture in their school system — they both attend the Academy of Science and Technology within College Park High School. But this was their first time teaming up, and their first time going to ISEF. They’ve both been interested in environmental science for some time (Justin cites the Pixar movie WALL-E as an early influence) and constructed their device themselves, doing the research in their own homes.

In their experiments, the device they built was able to successfully trap up to 94 percent of the microplastic particles present in the system, letting clean water flow out the other side. They’re keen to continue working on the invention, refining the design and ultimately looking toward scaling it up. But in the meantime, they’re hopeful that their success can serve as an inspiration to other young scientists, or anyone wondering how they can make a difference on an issue as thorny as the microplastics crisis.

Talking to them was like talking to any passionate youngsters (if those youngsters used a lot of terminology you had to google on the side and also invented a device with the potential to change one of the biggest problems facing our planet). I spoke with them a couple weeks after their ISEF win about their project, their experiences at the science fair, and what they’ve learned along the way. Their responses have been edited and condensed for clarity.

. . .

Q. Do you want to start by telling me a little bit about yourselves, and your interest in science?

Victoria: OK, I can go first. I’m Victoria Ou, I’m a current junior — well, ongoing to senior, in high school. We’ve actually been in school together since elementary. So we had the same sixth-grade science teacher, and she was kind of our big inspiration for getting into science. She really showed a lot of passion for it. And she was the one who had us do a science project that was really similar to a science fair. For my project that year, I actually did plastic pollution, which is how this kind of all started. I first read about the Great Pacific Garbage Patch and microplastics that we’re getting into our water and our food. And I was like, This is definitely a huge problem.

Justin: Ms. Caldwell was really the first one who raised the issue about the environment, and how we have one Earth and what we’re doing to it is really not good. So moving forward into our future, we wanted to be able to help with this issue. That’s how we got involved with this environmental aspect of science. She was the big inspiration for both of us.

Q. I’m sure that must mean a lot to her. So tell me more about your research, and how you got started with this project.

Victoria: So, we know microplastics are a huge issue, right? They get into all of our food and water and produce a lot of harmful health issues. We were looking into some possible ways to filter them out of our water. And there are a lot of current methods that we were looking at, but they all have their own disadvantages. Some of them are too expensive or too slow to work. And some of them also added chemicals that could be harmful to our health, which we definitely don’t want.

We were thinking of a more noninvasive approach. And we came upon two main studies for this — the first showed how ultrasound could be used to get red blood cells within your bloodstream to clump together. And we thought, ”Oh, this is kind of a similar concept to microplastics in water.” So we kept digging a little more into that and found another study that showed how they could focus microplastics within the water. So you would have water flowing and the microplastics would gather into streams in the water. We used these two as a big inspiration for our own project.

Two teenagers hold up a tube-shaped device

Victoria and Justin hold up their invention in front of their booth at ISEF. While it looks a little like two pens taped together, it is not, in fact, two pens taped together. Why would you even think that. Society for Science / Chris Ayers Photography

Q: How exactly does your invention work (for a nonscience person)?

Victoria: So imagine you have your tube, and water’s flowing this way. We have a transducer [Editor’s note: That’s a device that converts energy into something else] attached to one section of the tube that’s producing ultrasound. So as water is going this way, the ultrasound produces a force that pushes microplastics back the opposite way, but the water is still able to get through. So at the end we have water coming out, but the microplastics, they all kind of get stuck in the upper half of the tube, and that’s where they eventually accumulate. And we can clean them out afterwards.

Justin: You can think of it as invisible filtration — because you can’t really see the sound waves. But the microplastics are still getting blocked within the system, within the tube itself.

One of the things that we thought of here was, if we’re looking at physical filters, they’re really easy to get clogged. We wanted to make sure we didn’t have the same problem. In our experimentation, we did tests with high concentrations of microplastics, like, thousands of times higher than what we would see in real life, as well as really high volumes of water. And our system was still able to work really well. In the end, the microplastics are clumped together in the entry part of the tube — and we would have to clean it out eventually, but it doesn’t really run into any of the problems that physical filters do.

Q. What was it like testing your device? How did you build the experiment?

Justin: So first, to create the system — there’s actually equipment out there to generate ultrasound, but it’s really expensive.

Victoria: We found that there are three main components, which are the signal generator [Ed: an electronic device that produces electrical signals, or currents], power amplifier [Ed: does what it sounds like], and piezoelectric transducers [Ed: basically, converting electricity into vibrations].

So the signal generator and power amplifier we were able to borrow from Electronics and Innovation [Ed. an equipment manufacturer in New York]. They were actually really generous because we emailed them, we were like, “Hey, could we maybe rent this for this amount of money?” But once they heard we were high school students trying to do research, they were like, “Actually, we can give you this old model for free.” And we were super blown away, definitely could not have done it without them. Once we had the signal generator and power amplifier, we could produce the electrical impulses needed for our transducers to convert into ultrasound.

Justin: How we collected our data was we had microplastic samples that we created, whether that be shavings of objects around the house that were plastic, or cutting up plastic straws or that kind of stuff. And then we would put it in water and then we would have a syringe pump that we could slowly push the water through. That’s how we tested the system. We collected the water at the end, and then we did some analysis to see how much we filtered.

Q. How do you envision your device being used in the real world?

Victoria: We were thinking of two main applications for our device. One would be in water-treatment plants, since that directly impacts us and the water we use. And we were also, based on previous studies in the field, thinking of using this for laundry machines, to clean up the synthetic textile particles that come out of the laundry machines. Because they actually contribute to around 35 percent of primary microplastics pollution. So being able to clean up the laundry water before it goes back into the environment would help a lot, since we cut them off at the source instead of having to continuously clean them up from the environment.

Q. What do you feel like you learned going through the process of inventing this device and then taking it to ISEF?

Justin: Definitely something that I would’ve liked to hear when I was back in eighth grade doing science fair for the first time, is to always stay curious. Because you never know if something that you’re going to learn now is going to be useful in the future. I remember when I was in fifth grade, I built some LED lights with my grandpa — and that engineering skill really translated over to actually building the system here. So just stay curious and don’t give up.

Victoria: I guess on that note, I could also add to not be afraid of failure. When I went to ISEF, I was actually super intimidated by everyone else. I’d talk to a person, they’re like, “Oh, I’m going to Harvard, I’m going to MIT,” and I was like, “Oh my gosh, how could I ever measure up to these people? They’ve probably been successful their whole lives.” And I think having gone through the whole ISEF process, I just never realized that they put in a lot of hard work, too. Everything you see is only just the surface, right? You don’t see all the late nights, hundreds of hours of hard work that everyone puts in, and you don’t see the parts where they fail, either. Because no one ever wants to talk about that. But I think going through failure at some point is super important, because we failed a lot of times throughout our project, and each time it helped us learn something that could help us achieve the next step of being able to reach our goal. So I think just don’t give up, and learn from your mistakes, but keep going.

Q. On the note of never giving up — does doing this work make you feel more hopeful about our future, and more empowered to act on big issues like pollution and the climate crisis?

Justin: Yeah, definitely. You always see these things on the internet or on TV about how so-and-so invented whatever, to cure some disease or to solve some environmental issue. It’s really surreal being the ones who were able to create this, because we thought it took like, decades and decades of research. And of course it does, and what we have is just kind of a small step in our journey. But being able to see how just two high schoolers, from their own home, without even a lab, could make a difference in the world — I feel like that was truly something that inspired us, that can inspire us to go even further in the future.

Victoria: For me, going to ISEF was already super fun and I think that was fulfilling enough. And for other people, they don’t necessarily have to feel like you have to win an award or do something super famous to make a difference. I volunteer with our township sometimes to clean up trash. And every time I do that, I still feel almost as fulfilled as standing on that stage, you know? So I think just seeing the little things in life also is super fulfilling, and seeing how you can help the people next to you.

— Claire Elise Thompson

More exposure

A parting shot

In the U.K., environmental artist and activist Rob Arnold invented a filtration device (pictured here) that separates bits of plastic from sand and other natural detritus, using a filtering system that involves water flotation. He and other volunteers use the machine on beach cleanups to collect “nurdles,” tiny plastic pellets that are used to manufacture a range of plastic materials, but often end up as waste themselves.

A closeup shot of the mouth of a large container with water spilling out of it, and bits of plastic and sand visible in the stream

This story was originally published by Grist with the headline A different kind of youth activist: Meet the high schoolers who invented a microplastics solution on Jun 5, 2024.

Latest Eco-Friendly News